Multiple-Rank Modifications of a Sparse Cholesky Factorization
نویسندگان
چکیده
Given a sparse symmetric positive definite matrix AAT and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization after either adding a collection of columns to A or deleting a collection of columns from A. Our techniques are based on an analysis and manipulation of the underlying graph structure, using the framework developed in an earlier paper on rank-1 modifications [T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606–627]. Computationally, the multiple-rank update has better memory traffic and executes much faster than an equivalent series of rank-1 updates since the multiple-rank update makes one pass through L computing the new entries, while a series of rank-1 updates requires multiple passes through L.
منابع مشابه
Row Modifications of a Sparse Cholesky Factorization
Given a sparse, symmetric positive definite matrix C and an associated sparse Cholesky factorization LDL, we develop sparse techniques for updating the factorization after a symmetric modification of a row and column of C. We show how the modification in the Cholesky factorization associated with this rank-2 modification of C can be computed efficiently using a sparse rank-1 technique developed...
متن کاملAn Efficient Solver for Sparse Linear Systems Based on Rank-Structured Cholesky Factorization
Direct factorization methods for the solution of large, sparse linear systems that arise from PDE discretizations are robust, but typically show poor time and memory scalability for large systems. In this paper, we describe an efficient sparse, rank-structured Cholesky algorithm for solution of the positive definite linear system Ax = b when A comes from a discretized partial-differential equat...
متن کاملRobust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices
Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...
متن کاملComputational Issues for a New Class of Preconditioners
In this paper we consider solving a sequence of weighted linear least squares problems where the only changes from one problem to the next are the weights and the right hand side (or data). We alternate between iterative and direct methods to solve the normal equations for the least squares problems. The direct method is the Cholesky factorization. For the iterative method we discuss a class of...
متن کاملPerformance of Greedy Ordering Heuristics for Sparse Cholesky Factorization
Greedy algorithms for ordering sparse matrices for Cholesky factorization can be based on diierent metrics. Minimum degree, a popular and eeective greedy ordering scheme, minimizes the number of nonzero entries in the rank-1 update (degree) at each step of the factorization. Alternatively, minimum deeciency minimizes the number of nonzero entries introduced (deeciency) at each step of the facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 22 شماره
صفحات -
تاریخ انتشار 2001